Gravity

History, Problems, and Dissident Theories Bob de Hilster, June 23, 2015

Agenda

- Introduction
- History
 - Aristotle to Einstein and Beyond
- Problems
 - Motions of the Moon to Pioneer Slow Down
- Dissident theories
 - Particle theory to Electrostatic theory
- Observations

Bob de Hilster

- 10 years on gravity
- I still don't know what gravity is!
- No direct evidence
 - Need a gravity scope
- Only indirect evidence, i.e. motion
 - Things that cause motion:
 - Gravity, magnetics, electrostatics, nuclear....

Which One is Right?

• Each theory has:

- Good points
- Bad points
- An equation that works most of the time
- But not all of the time

The Scientific Method

- Observation
- Theory and equation
- Experiments

Aristotle

- Fourth Century BC
- Aristotle observes that objects move toward the center of the earth because of an inner gravitas or heaviness.
- http://en.wikipedia.org/wiki/History_of_gravi tational_theory

Newton's Observation

- The apple falling toward the center of the earth.
 - From the tree in his yard
 - From a tree in the mountain
 - From a hot air balloon
- Could the force that causes the apple to hall towards the earth be the same force that causes the moon to fall to the earth?
- He calls this force gravity.

Newton

- ▶ 17th Century The Plague
 - Newton leaves Cambridge to avoid the plague.
 - In 1665-66 Newton at age 25, works on gravity, light and fluid dynamics.
- Newton was a member of the Royal Society of Natural Philosophers. They were looking to prove that gravity reduces by the inverse square of the distance.
- Edmund Haley (Haley's comet) goes to Newton and asks: "If gravity reduces by the inverse square of the distance, will the orbits of the planets be elliptical?
- Newton answers: I have proved it!

Deriving the Equation

- Newton used four statements to develop his equation:
 - Kepler's 3RD Law: $T^2 \propto A^3$ Huygens's Law: $a = v^2/R$

 - Newton's 2ND Law: F = ma
 - Logic

 $F \propto M$

•
$$F \propto \frac{Mm}{R^2}$$

- To do this Newton modifies Kepler's 3rd law from elliptical to circular.
- Newton's equation is an approximation

R Squared Law

Physicists decide that R Square is precise and treat it as a precise equation by adding a constant 'G'.

$$\blacktriangleright F = \frac{GMm}{R^2}$$

- If R squared is precise, then G is an absolute constant.
- If R squared is an approximation, then G is not precise.
 - Any money spent to find a precise value is a waste.

Motions of the Moon

- Newton tried to use his equation to explain the motion of the moon. He wanted good data. Flamsteed had data, but would not give it to Newton.
- Newton finally got the data, but it did not work out very well.
- Newton wrote a booklet titled "Motions of the Moon". His equation does not appear in the booklet. Not one word of R squared. Oddly R cubed is mentioned.

Testing the Inverse Square Law

- Mark Ander and others measured gravity in a bore hole in the ice cap of Greenland.
- The results showed that:
 - An anomalous gravity gradient was observed"
- They did say that there must be an effect caused by the sub mass.

Anomalies

- There are documents that describe events as anomalies of nature.
 - Allais anomalies
 - Wang Eclipse
- There are no anomalies in nature!

• Many scientists use the word anomaly to ignore the event and the data.

- There are only discrepancies between measurements and calculations.
 - When our models and equations are not precise, we cannot expect precise answers.

Georges Louis Le Sage

- ▶ 18th Century
- Le Sage found a book that stated all astronomy could be explained using mechanical means. In 1747 he found a way for this to happen.
- He was successful in getting theory out, but it had many people arguing against it.

His Pushing Theory

- Particles come at us from all directions.
- Most of them pass right through us.
- A few interact and push us.
- There are fewer particles leaving us.
- Gravity
 - The particles moving up through the earth are reduced.
 - The particles coming down on us are not reduced. Hence, there are more pushing us down than there are pushing us up.

Le sage's Drawing

40 40 4040 ------+0 +4 +0 Drop Orto + ++ ++ 0+ -0 0-0-0 -0 0+0 0-2000 -------0 Op-0 0 × 0 0+0 -0+0 0-0+0+0 0+0 +0 +0 0-+ 0+ 0

Fig. 2. Pairs of macroscopic bodies traversed by currents of ultramundane corpuscles. From Le Sage's Essai de chymie méchanique. Photo courtesy of the Library of the Royal Society, London.

Pushing Gravity

- Le Sage points out: "That the horse does not pull the wagon, it pushes the harness".
- Newton had no theory, but many refer to it as a pull. Newton himself used the term 'attraction'.
- Question: Is gravity a pull or a push?
 Paper cup example

Discredited

- Today, most articles indicate that the theory is totally discredited.
 - Since the particle has mass and moves at extreme velocity:
- Three reasons
 - Drag
 - Heat
 - Aberration

Einstein's Observation

- Einstein noticed that when an elevator moved up, he could feel the compression that made it feel like gravity.
- From this he went on to develop General Relativity.

Relativity

- Special Relativity, 1915, is not about gravity
 - This involves an object at rest or moving at constant velocity.
- General Relativity, 1916, is about gravity
 - All Einstein wanted to do is include acceleration in his Relativity theory. As he did this, he realized he was moving towards gravity.

Not All Agreed

- A few scientists agreed with Einstein, but most of them disagreed.
- So how did it get accepted?

The Success of Relativity

- General Relativity predicted, that light passing by a large object like our sun would bend.
- Arthur Edington, 1919, measured the position of a distant star during an eclipse and claimed Einstein's theory was true.
- Later Einstein solved the mystery of the perihelion advance of Mercury. General Relativity accounted for 43 arc seconds of advance that were missing using Newton's equation.

Two Gravities?

GR's Solution for perihelion advance

Amount (arcsec/Julian century)	Cause
531.63 ±0.69 ^[4]	Gravitational tugs of the other planets, Newtonian
0.0254	Oblateness of the Sun
42.98 ±0.04 ^[5]	General relativity
574.64 ± 0.69	Total
574.10±0.65 ^[4]	Observed

The correction by 42.98" is obtained by a 3/2 multiple of classical prediction with <u>PPN parameters</u>

Parameterized Post Newtonian formalism

Bending Space-time

- General Relativity is a theory of gravity. The model for GR is a heavy ball bending a rubber sheet.
- Is this a pushing or a pulling theory?
- The act of bending a pencil requires the fingers to push against pencil while the thumbs push in the opposite direction.

Dr. Carezani

- In 1940 Dr. Ricardo Carezani thought that Special Relativity was wrong. He developed a theory called 'Autodynamics', and published a book titled "Storm in Physics".
- This has not been widely discussed.
 - It is a pushing theory of gravity.
 - David de Hilster helped Dr. Carezani.
 - Made a documentary to show the world that Relativity was wrong.
 - David got me started in gravity.

'Pushing Gravity' -The Book

- In 2002 a book titled 'Pushing Gravity', edited by Mathew Edwards, was published and there are 23 articles in the book concerning Le Sage's theory of gravity.
- It is not totally dead!

Gravity Problems

- Motions of the Moon
- Perihelion Advance of Mercury
- Gravity Measurements in the Greenland ice cap
- Pioneer Spacecraft Slowdown
- Velocity of stars at the edge of our galaxy
 - Need Dark Matter

• $v = \sqrt{GM/R}$

Dissident Theories

- Vortex Theories, Descartes, (2)
- Empirical theories, Newton, (2)
- Particle Theories, Le Sage (9)
- Electromagnetic Theories, Maxwell (1)
- Deformation of space-time, Einstein (2)
- Emission Theory, Carezani (1)

My Observations

The sun is not there!Gravity is not free!

Observing the Sun

Observations:

The sun is straight over head
The solar tides are at my feet.
The sun moves across the sky

Gravity is Instantaneous

- This suggests that the force of gravity can act over large distances in an instant of time.
- Newton's gravity is often described as Instantaneous action at a distance.
 - Most say this is impossible, but use Newton's equation anyway.

Is Light Instantaneous?

- We are told that the yellow object in the sky is the sun.
- So the sun is straight overhead and we see it at the same time.
- In order for this to happen, the speed of light must also be instantaneous.
 - Most people are assuming the speed of light is instantaneous and don't even know it!

If the Speeds are the Same

- According to Newton, the speed of gravity must be instantaneous.
- Because the image in your eye occurs at the same time as the sun is straight over head, the speed of light is instantaneous.
- When the speed of light and the speed of gravity are the same, Newton's equation works.

Confused?

The Physical Sun

The Visible Sun

It has moved west!

- Some will say that the sun does not move.
- But as we observe the sun from the surface of the earth, we can see that it moves west because of the spin of the earth.
- In 500 seconds the sun moves 2.08 degrees to the west.
 - 360 degrees x 500/(24 x 3600) = 2.08 degrees

The Physical Sun Moved West

An Object Moves

- If it takes 500 seconds for the gravitational effect of the sun to move from the sun to the surface of the earth,
- There must be an object that moves.
- Is there a theory that meets this requirement?
- And what is the speed of gravity if it takes 500 second to get to the earth?

The Same

If the speed of gravity is the same as the speed of light then:

Newton's equation works!

Different Models

- Earth centered model with sun moving
- Earth centered model with the moon moving
- Sun centered model with the earth moving
 - Cannot determine if gravity is an object that moves

Direction of the Movement

- Something is moving from the sun to the earth!
- So what causes the tides to rise, if the movement is towards the earth?

Direction of the Movement

- Something is moving from the sun to the earth!
- So what causes the tides to rise, if the movement is towards the earth?
- A reduced number of particles could be moving.

What Theory?

Is there a theory that causes a reduced gravity field between two objects?

Is Gravity Free?

- Motion is not free!
 - It takes gasoline to move a car
 - It takes rocket fuel to move a spaceship
 - It takes calories to lift a coffee cup
- But gravity can move galaxies all over the universe and it doesn't cost:
 - One horse power
 - One BTU
 - One calorie

Newton

- Equation: $F = \frac{GMm}{R^2}$
- What is being used?
 G, M, m, R
- F is the cause and is being used up, but what is it?

Einstein

- Equation $G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$
- What is being used?
 G?
- There is no force in General Relativity, so force is not being used up.

Conservation of Energy

- No matter what you are doing in physics, you must not violate the Conservation of Energy.
- Is there a theory that does not violate the conservation of energy?

Le Sage's Theory

Fig. 2. Pairs of macroscopic bodies traversed by currents of ultramundane corpuscles. From Le Sage's Essai de chymie méchanique. Photo courtesy of the Library of the Royal Society, London.

Thank You!

Open Discussion

Motions of the Moon

Their Most Happy Moment

- It seems that the key people involved with gravity have a moment they remember as very important.
 - Newton nay have had that moment when the apple hit him on the head.
 - Le Sage had that moment and immediately sent a letter to his father.
 - Einstein's happiest moment was when he realized that acceleration and gravitation are related to each other, i.e. mechanical acceleration is indistinguishable from gravity.

Melbourne G. Evans

Mr. Evans wrote a paper in 1958 titled "Newton and the Cause of Gravity"

His theories

- Action at a distance; Ether, condensing toward the earth; a particle theory (Fatio)
- "Hypotheses non fingo"

R Squared

- Works at long distances
- But not for short distances or below the earth